Your Destination for Mobility Engineering Resources
Announcements for SAE Mobilus
Browse AllRecent SAE Edge™ Research Reports
Browse All 156Recent Books
Browse All 972Recently Published
Browse AllABSTRACT Route planning plays an integral role in mission planning for ground vehicle operations in urban areas. Determining the optimum path through an urban area is a well understood problem for traditional ground vehicles; however, in the case of autonomous unmanned ground vehicles (UGVs), additional factors must be considered. For a UGV, perception, rather than mobility, will be the limiting factor in determining operational areas. Current ground vehicle route planning techniques do not take perception concerns into account, and these techniques are not suited for route planning for UGVs. For this study, perception was incorporated into the route planning process by including expected sensor accuracy for GPS, LIDAR, and inertial sensors into the path planning algorithm. The path planner also accounts for additional factors related to UGV performance capabilities that affect autonomous navigation
ABSTRACT A methodology based on a combination of commercial software tools is developed for rendering complex acoustic scenes in real time. The methodology aims to bridge the gap between real time acoustic rendering algorithms which lack important physics for the exterior urban environment and more rigorous but computationally expensive geometric or wave-based acoustics software by incorporating pre-computed results into a real time framework. The methodology is developed by surveying the best in class commercial software, outlining a general means for accommodating results from each, and identifying areas where supplemental capability is required. This approach yields a real time solution with improved accuracy. Strengths and limitations in current commercial technologies are identified and summarized
ABSTRACT The recent climate change plan for the United States Army states that hybridized combat vehicles will enter the fleet by 2050. The Bradley Fighting Vehicle (BFV) and its family of vehicles are prime candidates for hybridization. This paper sets out to perform a drive cycle analysis for the BFV using its traditional powertrain along with hybridized powertrains. The analysis considers both series and parallel hybrid architectures, where the size of the batteries are based on modifications to the existing powertrain. Three different drive cycles are considered – stationary, highway, and off-road. The model accounts for accelerative forces, transmission losses, cooling losses, drag, road grade, tractive losses, and ancillary equipment. The results indicate that both parallel and series hybrids provide reduced fuel consumption and increased range. Of the two, the series hybrid architecture provides more overall benefits. The study concludes by discussion of the technical challenges
ABSTRACT Rubber tracks are now extremely competitive for vehicles up to 50 tons and fully fielded on 39 ton vehicles. They represent the best of what technology can offer for tracked vehicles, in terms of high durability, performance and low life cycle cost. This is mainly attributed to the optimization through the five (5) technological tools described in this paper. Better from its numerous distinctive advantages, rubber tracks can be adapted to suit virtually any specific need. This ductile rubber track technology can be shaped to match today’s requirements, with the help of advanced rubber compounding and computer simulations
This study aims to explore the multifaceted influencing factors of market acceptance and consumer behavior of low-altitude flight services through online surveys and advanced neuroscientific methods (such as functional magnetic resonance imaging fMRI, electroencephalography EEG, functional near-infrared spectroscopy fNIRS) combined with artificial intelligence and video advertisement quantitative analysis. We conducted an in-depth study of the current trends in low-altitude flight vehicle development and customer acceptance of low-altitude services, focusing particularly on the survey methods used for market acceptance. To overcome the influence of strong opinion leaders in volunteer group experiments, we designed specialized surveys targeting broader online and social media groups. Utilizing specialized knowledge in aviation psychology, we designed a distinctive questionnaire and, within just 7 days of its launch, gathered a significant number of valid responses. The data was then
In non-cooperative environments, unmanned aerial vehicles (UAVs) have to land without artificial markers, which is a key step towards achieving full autonomy. However, the existing vision-based schemes have the common problems of poor robustness and generalization, and the LiDAR-based schemes have the disadvantages of low resolution, high power consumption and high weight. In this paper, we propose an UAV landing system equipped with a binocular camera to preform 3D reconstruction and select the safe landing zone. The whole system only consists of a stereo camera, and the innovation of the solution is fusing the stereo matching algorithm and monocular depth estimation(MDE) model to get a robust prediction on the metric depth. The whole landing system consists of a stereo matching module, a monocular depth estimation (MDE) module, a depth fusion module, and a safe landing zone selection module. The stereo matching module uses Semi-Global Matching (SGM) algorithm to calculate the
With the rapid advancement of Unmanned Aerial Vehicle (UAV) technology, their assigned missions have become significantly more intricate. Individual UAVs are no longer sufficient to meet these diverse and demanding requirements. There is now a shift towards employing multiple UAVs operating collaboratively to address complex tasks, replacing the reliance on singular units. This study focuses on the complexities of coordinated flight within UAV formations. A dynamic consensus optimal control algorithm is proposed for distributed formations, grounded in optimal control theory. Furthermore, the enhanced control method is validated via simulation on a semi-physical visualization platform, effectively closing the gap between real-world formation requirements and simulation outcomes. The results from these simulations underscore that the proposed method effectively preserves UAV formation integrity and demonstrates exceptional applicability in real-world scenarios